Acta Cryst. (1964). 17, 615

New intermediate phases in systems of Nb or Ta with Rh, Ir, Pd, or Pt. By B. C. GIESSEN and N. J. GRANT, Department of Metallurgy, Massachusetts Institute of Technology, Cambridge, Massachusetts. U.S.A.

(Received 18 November 1963)

Table 1. New intermediate phases

Compositional designation	Crystal system	Structure type	Layer struc- ture symbol	a_0	b_0	c_0	α
(Nb0.85 Rh0.15)Rh	orthorhombic	B19–AuCd	AB(2)	2·813 Å	$4 \cdot 808 \text{ Å}$	$4{\cdot}510$ Å	
α NbPt*	orthorhombic	B19-AuCd	AB(2)	2.780	4.983	4.611	
(NbaseRhased)Rh	tetragonal	Ll _o -AuCu	AB(3)	4.019		3.809	
$(Nb_{0.05}Ir_{0.05})Ir$	tetragonal	Llo-AuCu	AB(3)	4.027		3.863	
(Ta,Rh)Rh	orthorhombic	α ŤaRh	AB(6)	2.822	4.742	13.551	
$(Nb_{0.00}Rh_{0.10})Rh$	orthorhombic	α TaRh	AB(6)	2.827	4.770	13.587	
(Nbass Irass)Ir	orthorhombic	α TaRh	AB(6)	2.823	4.818	13.619	
$(Ta_{0.00}Ir_{0.14})Ir$	orthorhombic	α TaRh	AB(6)	2.830	4.803	13.661	
(Nbarr Rharr)Rht	monoclinic	Nb ₂ Rh ₅	AB(9)	2.806	4.772	20.25	90° 31·5′
NbPt.	orthorhombic	NbPt,	$AB_{a}(3)$	2.801	8.459	3.951	
TaPd.	orthorhombic	NbPt	$AB_{a}(3)$	2.896	8.397	3.790	
TaPt.	orthorhombic	TaPt	$AB_{a}(2)$	8.403	4.785	4.744	
TaBh	orthorhombic	Co.Si	21	8.179	5.454	4.027	
α NbPt	orthorhombic	$D\dot{O}_{a}$ -TiCu ₂	$AB_{a}(2) \operatorname{sh} \frac{1}{2}$	5.534	4.873	4.564	
Nb(Rhom Nbour)	hexagonal	VCo.	$AB_{a}(6) \operatorname{sh} \tilde{0}$	5.483		13.405	
B NbPd.	orthorhombic	β NbPd.	$AB_{2}(6)$ sh $\frac{1}{2}$	5.486	4.845	13.60_{2}	
8 NbPt	monoclinic	B NbPt.	$AB_{a}(12) \operatorname{sh} \frac{1}{2}$	5.53^{-}	4·870	$27 \cdot 3_{3}$	90° 32′
β TaPt ₃	monoclinic	$\beta \operatorname{NbPt}_3$	$AB_3(12)$ sh $\frac{1}{2}$	5.537	4.869	27·33 [°]	90° 32·4′

* Measured at Nb+52 at.% Pt.

† Possible further ordering based on Nb₃Rh₅ leads to doubling of a_0 and b_0 .

Recent investigations of binary systems combining Nb or Ta with Rh, Ir, Pd, or Pt showed the existence of several new intermediate phases, in addition to those previously reported (Greenfield & Beck, 1956; Dwight & Beck, 1959; Nevitt, 1963; Darby, Downey & Norton, 1963). These new phases will be described in more detail in separate publications dealing with the respective phase diagrams.

The structures were deduced mostly from powder patterns taken with a 114.6 mm camera and Cu $K\alpha$ or Cr K α radiation; however, α TaRh, TaRh₂, Nb₃Rh₅, and β NbPt₃ rotating crystal patterns were employed to facilitate indexing. For all powder patterns, internal standards were used. Error limits on all measurements are $<5\cdot10^{-4}$. In Table 1 are listed the new intermediate phases. Besides the customary data a symbol $A_m B_n$ (l) sh x is presented for all close-packed layer structures, listing the composition $A_m B_n$, the number l of close packed layers per unit cell, and the shift density x in the unit layer (for AB₃ phases), following a suggestion by Wegst & Schubert (1958). Table 2 lists the new structure types together with the layer stacking sequence.

Table 2. New structure types

 α TaRh:

Orthorhombic, space group $Pmcm(D_{2h}^5)$; N=12 atoms per cell. Stacking sequence babcac, babcac.

Ta: 4(i):
$$x_i = 0; \quad y_i \approx 0.317; \quad z_i \approx -\frac{1}{12} = -0.083;$$

2(e): $x_e = 0; \quad y_e \approx 0.05; \quad z_e = -\frac{1}{4};$
Rh: 4(j): $x_j = \frac{1}{2}; \quad y_j \approx 0.817; \quad z_j \approx -\frac{1}{12} = -0.083;$

$$2(f): x_f = \frac{1}{2}; y_f \approx 0.55; z_f = \frac{1}{4}$$

Table 2 (cont.)

Monoclinic, space group $P2/m(C_{2h}^1)$; N=18 atoms per cell. Stacking sequence *ababcbcac*, *ababcbcac*.

NbPt₂:

Nb₃Rh₅:

Orthorhombic, space group $Immm(D_{2h}^{25})$; N=6 atoms per cell. Stacking sequence *abc*, *abc*.

[000;	$rac{1}{2},rac{1}{2},rac{1}{2}]$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$]					
	+Nb:	2(a):	000;				
	+Pt:	4(g):	$\pm (0y0);$	$y = 0.337 \pm 0.001$			

TaPt₂:

- Orthorhombic, space group $Cmcm(D_{2h}^{17})$; N=12 atoms per cell. Stacking sequence ab, ab.
- $\begin{array}{ll} [000; & \frac{1}{2}, \frac{1}{2}, 0] \\ &+ \operatorname{Ta:} 4(c): & \pm (0, y_c, \frac{1}{4}); \\ &+ \operatorname{Pt:} 8(g): & \pm (x_g, y_g, \frac{1}{4}; \ \overline{x}_g, y_g, \frac{1}{4}); \\ & y_c \sim 0.22; \ x_g \sim \frac{1}{6}; \ y_g \sim y_c + \frac{1}{2} \sim 0.72 \,. \end{array}$

Table 2 (cont.)

 β NbPd₃:

Orthorhombic, space group $Pmmn(D_{2h}^{13})$; N=24 atoms per cell. Stacking sequence babcac, babcac.

 β NbPt₃:

Monoclinic, space group $P2_1/m$ (C_{2h}^2) ; N=48 atoms per cell. Stacking sequence cacabebcabab, cacabebcabab.

In addition to these structures, phases of the NbPt₂ type were found in VNi₂, VPd₂, VPt₂, and NbPd₂, and an additional TiCu₃ type phase was encountered in α TaPt₃. VNi₂ and VPt₂ have also been recently reported by Schubert *et al.* (1963) who also found a phase Nb₄₀Pd₆₀ of the same type as NbPd₂.

All described AB and AB₃ phases are close-packed, as is the A_3B_5 phase. In the NbPt₂ type, the lattice can be regarded as composed of plane close-packed layers in the (101) plane in which each Nb atom is surrounded by 6 Pt atoms, stacked in the sequence abc, abc. The TaPt₂ lattice is made up of similar layers stacked in sequence ab, ab; however, there is a considerable displacement from ideal positions in this case.

In most cases where A and B belong to the same long period, lines due to ordering of the lattice were not observed with certainty. This leaves the possibility of a larger unit cell, especially for β NbPd₃, where a larger shift density seems possible and for (Nb_{0.75}Rh_{0.25})Rh, where a larger ordered basal plane A₃B₅ is possible.

 α NbPt₃ (TiCu₃ type) is probably stabilized with respect to β NbPt₃ by very small amounts of interstitial impurities.

On comparing the mean atomic volumes for each phase to those calculated from a Vegard's law straight line (Massalski & King, 1961), it was found that there is a strong contraction for AB and AB₃ phases and a smaller contraction for AB₂ phases, especially TaPt₂ and TaRh₂, Nb₃Rh₅ being intermediate. This agrees with the above mentioned distortion in TaPt₂.

The results support the concept (e.g. Brewer, 1963) that the determining factor for the stability of a given layer structure is the valence electron/atom ratio, resulting in 2- or 3-layer structures, but that small changes of this quantity and of the size factor, especially by off-stoichiometry or impurities, influence the layer type and produce more complex close-packed intermediate structures.

References

- BREWER, L. (1963). Prediction of High Temperature Metallic Phase Diagrams. University of California, UCRL/10701.
- DARBY, J. B., Jr., DOWNEY, J. W. & NORTON, L. J. (1963). Trans. Met. Soc. Amer. Inst. Min. (metall.) Engrs, 227, 1028.
- DWIGHT, A. E. & BECK, P. A. (1959) Trans. Amer. Inst. Min. (metall.) Engrs, 215, 976.
- GREENFIELD, P. & BECK, P. A. (1956). Trans. Amer. Inst. Min. (metall.) Engrs, 206, 265.
- MASSALSKI, T. B. & KING, H. W. (1961). Progr. Materials Science, 10, 41.
- NEVITT, M. N. (1963). In *Electronic Structure and Alloy* Chemistry of the Transition Elements. Ed. P. A. Beck. p. 101. New York: Interscience Pub.
- SCHUBERT, K. et al. (1963). Naturwissenschaften, 50, 41. WEGST, J. & SCHUBERT, K. (1958). Z. Metallk. 49, 533.

Acta Cryst. (1964). 17, 616

Crystallographic data for silver acetylide. A. D. REDHOUSE and P. WOODWARD, Department of Inorganic Chemistry, The University, Bristol, England

(Received 18 November 1963)

Passage of acetylene into aqueous silver nitrate solution produces a precipitate, according to conditions (Vestin & Ralf, 1949), of either Ag_2C_2 , $Ag_2C_2.AgNO_3$ or Ag_2C_2 . $6AgNO_3$. The 1:1 complex can also be made by reaction of the 1:6 complex with water (Shaw & Fisher, 1946).

Specimens of the 1:1 complex were prepared by both of the above methods, and their chemical identity established by analysis (Found: Ag 78.9%, C 6.1%, N 3.7%; Ag₂C₂. AgNO₃ requires Ag 79.0%, C 5.86%, N 3.42%). Powder diffraction patterns were obtained with both a Philips Debye-Scherrer camera (diameter 114.83 mm) and a Philips recording diffractometer in conjunction with a silicon standard. The observed *d* values are listed in Table 1; these can be indexed on a body-centred tetra-